Idempotent Pre - Generalized Hypersubstitutions of Type τ = ( 2 , 2 ) ∗

نویسنده

  • S. Leeratanavalee
چکیده

The concept of idempotent elements plays an important role in semigroup theory and semiring theory. In this paper we characterize idempotent pre-generalized hypersubstitutions of type τ = (2, 2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Order of Generalized Hypersubstitutions of Type τ=(2)

The order of hypersubstitutions, all idempotent elements on the monoid of all hypersubstitutions of type τ 2 were studied by K. Denecke and Sh. L. Wismath and all idempotent elements on the monoid of all hypersubstitutions of type τ 2, 2 were studied by Th. Changpas and K. Denecke. We want to study similar problems for the monoid of all generalized hypersubstitutions of type τ 2 . In this paper...

متن کامل

Orders of Generalized Hypersubstitutions of Type τ = ( 3 )

Received:29-10-10/Accepted:9-11-10 Abstract The concept of generalized hypersubstitutions was introduced by S. Leeratanavalee and K. Denecke in 2000. We used it as the tool to study strong hyperidentities and strongly solid varieties. In this paper we characterize all idempotent generalized hypersubstitutions of type τ = (3) and determine the order of each generalized hypersubstitution of this ...

متن کامل

M - Strongly Solid Monoids of Generalized Hypersubstitutions of Type Τ = ( 2 )

The purpose of this paper is to characterizeM -strongly solid monoids of generalized hypersubstitutions of type τ = (2) which is the extension of M -solid monoids of hypersubstitutions of the same type.

متن کامل

Multi-solid Varieties

We consider the concepts of colored terms and multihypersubstitutions. If t ∈ Wτ (X) is a term of type τ , then any mapping αt : Pos (t) → IN of the non-variable positions of a term into the set of natural numbers is called a coloration of t. The set W c τ (X) of colored terms consists of all pairs 〈t, αt〉. The set Hyp(τ) of all hypersubstitutions of type τ is a countable monoid. If M is a subm...

متن کامل

The Galois Correspondence between Subvariety Lattices and Monoids of Hypersubstitutions

Denecke and Reichel have described a method of studying the lattice of all varieties of a given type by using monoids of hypersubstitutions. In this paper we develop a Galois correspondence between monoids of hypersubstitutions of a given type and lattices of subvarieties of a given variety of that type. We then apply the results obtained to the lattice of varieties of bands (idempotent semigro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007